Identifying Soil Texture
Soils are made up of particles of different sizes, the largest sand, followed by silt, to the smallest clays. Together these make up the soil’s texture. Soil texture has a direct impact on soil physical properties: porosity, water holding capacity and bulk density. Furthermore soil clay content determines soil chemical properties and the soil’s ability to hold onto nutrients.
This blog will discuss hands on ways to determine your soil texture, how texture relates to key soil physical properties and the role of clays in the soil. You can determine your soil texture at the same time as you carry out the VSA described in the previous blog post and together these practices will improve the quality of your information.
The change in a soil with depth, the cross section down through the soil, is referred to as the soil profile. It normally consists of a number of soil horizons (layers) each with different characteristics (texture and/or stone content). The picture below shows a soil profile with six distinct soil horizons. When scheduling irrigation you need to know information about the hydraulic (water) properties of each soil horizon that plant roots occupy within the soil profile to determine the amount of water available to the plant. This determines how frequently you need to irrigate (return period) and the maximum irrigation you can apply in one application (irrigation depth).
Example soil profile |
Hands on method to determine your soil texture. Found in the joint Irrigation NZ and Plant and Food resource - Click here to visit the webpage. |
The graph below shows typical soil water holding capacities (WHC) for different soil textures in % or mm of water per 100 mm of soil depth. It also shows their typical permanent wilting points (WP) and field capacities (FC). The relationship between WHC, porosity and bulk density is straightforward. Sand has the largest particles, the lowest WHC and therefore the lowest porosity. This translates into the highest bulk density because less space is occupied by air. As shown by the WHC of silt and clay below, silt has a higher porosity and lower bulk density which is very similar to clay soils although clays tend to have the highest porosity. This is because clay is made up of lots of small particles which create lots of air spaces between them. Therefore clay also has the lowest values for bulk density.
Relationship between soil texture and soil water content. Found in the joint Irrigation NZ and Plant and Food resource. |
For more information on soil texture and water holding capacity you will find a great resource by following this link.
Once you have an idea of your soil texture and water holding capacity mapping tools can be used to get an idea of the representation of this soil type across your whole farm. Simple mapping such as Google Earth images (see the Ground Truthing your Soil Variability blog) and S-Map (which will be discussed in a future blog post) are helpful resources. It is important to be aware that these are tools to increase your understanding but to provide the detail required for efficient farm management tools such as EM mapping and determining exact water holding capacity are greatly beneficial.
Blog post written by Nicole Mesman - BSc (Hons) Soil Science.