Tuesday, 24 February 2015

The Irrigation, Grazing Game

In this week’s H2Grow blog post we are pleased to introduce our first guest contributor - Nicole Mesman.

My name is Nicole Mesman and last year, since finishing my honours in soil science at Lincoln University, I have been working for Lindsay NZ to review the benefits that farmers are receiving from their Growsmart Precision VRI systems. My honours project looked at the effect of grazing and irrigation on soil porosity. While university projects are often published in journal articles I feel like research can sometimes take a long time to make its way to our farmers and end users, those who we are trying to help with this research in the first place. I am very happy that I am able to explain my findings to an audience that might be able to make use of this information.

I wanted to find out what, if any, effect irrigation was having on soil porosity and water holding capacity. From both my findings and the research of others I was able to suggest that a combination of irrigation and cattle grazing led to a decrease in soil macroporosity and those micropores holding water in the range readily available to plants. Also that there is an increase in very small micropores storing water that plants are unable to access.

Macropores are the largest pores, they don’t store water for the plant but provide aeration for the soil, space for root growth and allow water to infiltrate through them to the small micropores that the plant draws water from. Reduction in macropores can result in decreased root and plant growth and an increase in waterlogging and surface run-off as water is unable to infiltrate into the soil and instead pools and runs off the surface.

Macropores allow water to pass quickly through them and are occupied with air unless the soil is waterlogged. Micropores store water for plants to access, some micropores are so small that plants are unable to draw water out of them.
The result of a decrease in micropores is less water held between field capacity and refill point; readily available water for plants. In order to ensure plants have optimum water available to them irrigation volumes should be decreased but made more frequent to ensure neither overwatering or water stress is occurring. Once compaction of soil and decrease of microporosity has occurred it is easier for damage to continue. Soils take longer to dry out after irrigation and subsequent grazing events are more likely to damage the soil again.

When a soil becomes compacted under a combination of irrigation and grazing events the available water decreases as soil particles are compressed together. This means there is less water available to the plant and irrigation volumes should decrease while frequency increases to maintain water content.
If you think you may be seeing the negative effects of decreased macroporosity and microporosity on your property then there are steps you can take to avoid further damage:
  • Soil moisture sensors that are calibrated for your soil type allow you to identify when your different soils require irrigating and mean that you can change your irrigation volumes according to your field capacity. Reduction in micropores may mean that soils retain a higher moisture content for longer and are more susceptible to further damage when grazed. Moisture sensors will also allow you to monitor areas that have been irrigated and determine when moisture content has decreased below field capacity and stock could be moved back to graze the area, avoiding further damage to soil structure. 
  • Decreased macroporosity can be countered by leaving a paddock under pasture, allowing roots and organic matter additions to create structure while using variable rate technology to adapt your irrigation. Irrigation can be altered to avoid areas where decreased macroporosity has resulted in ponding, this can help the area dry out and encourage grass growth.

That’s all for now but please watch this space for my next post where I will tell you about the specifics of my trial, quantify the changes in macroporosity and microporosity that myself and others have measured, explain the role of these properties in soil quality and natural capital and how their importance in this system can be assessed.  

Blog post by Nicole Mesman - BSc (Hons) Soil Science